2009年11月11日 星期三

[挑戰題]求有理根與公根的方程式

1)設aZ ,若x^2-3x+a=0 ,
2x^2+ax-4=0與ax^2+bx-3=0恰有一公根,則a=
□ , b=□

2)設x^2+px+q=0與x^2+qx+p=0僅有一公共根,則其他二非公共根之和=□

3)設f(x)=x^3+6x^2+11x+6
, g(x)=x^3+7x^2+14x+8 , 若實數h , 滿足f(h)*g(h)=0 ,
且f(h)+g(h)
≠0,求h=


原連結







參考如下,
請指教

1)
x^2-3x+a=0…………..(1)
2x^2+ax-4=0…………(2)


一次因式檢驗法檢驗(2)

 f(x)=2x^2+ax-4=0, 可能有+-4, +-2, +-1, +-1/2之解 


f(4)=32+4a-4=0,
a=-7, f(-1/2)=1/2-1/2a-4=0, a=-7,
代入(1) 不合

f(-4)=32-4a-4=0,
a=7, f(1/2)=1/2+1/2a-4=0, a=7,
代入(1) 不合
f(2)=8+2a-4=0,
a=-2, f(-1)=2-a-4=0, a=-2,
代入(1) 不合
f(-2)=8-2a-4=0,
a=2, f(1)=2+a-4=0, a=2,
代入(1) , a=2,

a=2
代入(1), x^2-3x+2=0, (x-2)(x-1)=0,
x=2,1
a=2
代入
(2), 2x^2+2x-4=0, (x+2)(x-1)=0,
x=-2,1
得公根為1


a=2, x=1代入ax^2+bx-3=0,
得2+b-3=0, b=1


: a=2,
b=1
 




2)將兩多項式相減得: (p-q)x-(p-q)=0, x-1=0,
x=1


x^2+px+q=0,
兩根和為-p, 故另一根為-p-1

x^2+qx+p=0, 兩根和為-q, 故另一根為-q-1


則另一根之和:
-p-1-q-1=-p-q-2


:
-p-q-2
 


3)

 f(x)=x^3+6x^2+11x+6=(x+1)(x+2)(x+3)
g(x)=x^3+7x^2+14x+8=(x+1)(x+2)(x+4)


h=-1,-2會使f(h)+g(h) =0,
不合!


h=-3,-4 使f(h)*g(h)=0 , 且f(h)+g(h) ≠0


 答: h = -3,-4


 


mazilla解第一題


Z ,若x^2-3x+a=0 , 2x^2+ax-4=0與ax^2+bx-3=0恰有一公根,則a=□ ,
b=□

令該公根為v,即有
v^2 -3v +a=0...(1)
2v^2 +av -4=0...(2)
av^2 +bv
-3=0...(3)
將(1)代入(2)得
2v^2 +(3v -v^2)v -4=0
v^3 -5v^2 +4
=0
(v-1)(v^2 -4v -4) =0...(4)
由於a∈Z,結合(1)和(4)得
v=1,再代入(1)得
a=2
再代入(3)得
b=1





0 意見:

張貼留言