2009年12月7日 星期一
2009年11月22日 星期日
數學歸納法證明
數學歸納法證明4題
1.1‧2^2 +2‧3^2+3‧4^2+......+n(n+1)^2= n(n+1)(n+2)(3n+5)/12
【證明】:
-----------------------------------------------------------------------------
2.1/1+1/(1+2)+......1/(1+2+.....+n)=2n/(n+1)
【證明】:
-------------------------------------------------------------------------
3.n^3+(n+1)^3+(n+2)^3是9的倍數
【證明】:
----------------------------------------------------------------------------
4.對於任意大於或等於3的正整數n,5^n>3^n+4^n成立。
【證明】:
原連結
1.1‧2^2 +2‧3^2+3‧4^2+......+n(n+1)^2= n(n+1)(n+2)(3n+5)/12
【證明】:
1)n=1時, 左式=1(2)^2=4, 右式=1‧2‧3‧8/12=4, ∴原式成立
2)假設n=k時, 命題成立
即1‧2^2 +2‧3^2+3‧4^2+......+k(k+1)^2= k(k+1)(k+2)(3k+5)/12
則1‧2^2 +2‧3^2+3‧4^2+......+k(k+1)^2+(k+1)(k+2)^2
= k(k+1)(k+2)(3k+5)/12+(k+1)(k+2)^2=(k+1)(k+2) [k(3k+5)+12(k+2)] /12
=(k+1)(k+2) [3k^2+5k+12k+24] /12= (k+1)(k+2) [3k^2+17k+24] /12
= (k+1)(k+2) (k+3) (3k+8) /12= (k+1)(k+2) (k+3)[3(k+1)+5] /12
∴n=k+1時, 命題也成立
3)由1),2)及數學歸納法, 命題成立!
----------------------------------------------------------------------------
2.1/1+1/(1+2)+......1/(1+2+.....+n)=2n/(n+1)
【證明】:
1)n=1時, 左式=1/1=1, 右式=2‧1/(1+1)=1 ∴原式成立
2)假設n=k時, 命題成立
即1/1+1/(1+2)+......1/(1+2+.....+k)=2k/(k+1)
則1/1+1/(1+2)+......1/(1+2+.....+k)+1/(1+2+…+k+k+1)
=2k/(k+1) +1/(1+2+…+k+k+1)
=2k/(k+1) +1/[(1+k+1)(k+1)/2]=2k/(k+1) +2/[(k+1)(k+2)]
= [2k(k+2)+2]/[(k+1)(k+2)]= (2k^2+4k+2)/[(k+1)(k+2)]
= 2(k+1)^2/[(k+1)(k+2)]=2(k+1)/(k+1+1)
∴n=k+1時, 命題也成立
3)由1),2)及數學歸納法, 命題成立!
-------------------------------------------------------------------------
3.n^3+(n+1)^3+(n+2)^3是9的倍數
【證明】:
1)n=1時, 左式=1+8+27=36=9*4, 是9的倍數, ∴原式成立
2)假設n=k時, 命題成立
令k^3+(k+1)^3+(k+2)^3=9p, p為自然數
則(k+1)^3+(k+2)^3+(k+3)^3=(k+1)^3+(k+2)^3+k^3+9k^2+27k+27
=[ k^3+ (k+1)^3+(k+2)^3]+ +9k^2+27k+27
=9p+9(k^2+3k+3)=9(p+ k^2+3k+3)是9的倍數
∴n=k+1時, 命題也成立
3)由1),2)及數學歸納法, 命題成立!
-----------------------------------------------------------------------------
4.對於任意大於或等於3的正整數n,5^n>3^n+4^n成立。
【證明】:
1)n=3時, 左式=5^3=125>3^3+4^3=27+64=91=右式 ∴原式成立
2)假設n=k時, 命題成立
即5^k>3^k+4^k
則5^(k+1)=5(5^k)>5(3^k+4^k)=5x3^k+5x4^k>3x3^k+4x4^k=3^(k+1)+4^(k+1)
∴n=k+1時, 命題也成立
3)由1),2)及數學歸納法, 命題成立!
2009年11月18日 星期三
不定方程式求正整數解
求所有正整數解
X(3X+7Y)-2X-5Y=35
(X-5/7)(3X+7Y+1/7)=35-5/49
兩邊同乘上49得
(7X-5)(21X+49Y+1)=1710
因為要求正整數解
21X+49Y+1至少是71,並且除以7餘1
所以可能值只有855和190
(1)21X+49Y+1=855,7X-5=2
X=1,Y=17
(2)21X+49Y+1=190,7X-5=9
X=2,Y=3
答案
(X,Y)=(1,17) OR (2,3)
2009年11月12日 星期四
尤拉公式的由來
我說的是:某數x(1-1/5)x(1-1/7).....
請別扯到三角函數(還是這兩者本來就有關??)
請告訴我原理
越淺顯易懂越好
2.二元一次方程式
請告訴我在何種情況下,ax+by=c會得到整數解
請給我類似公式或定理的東西
2009年11月7日 星期六
證明不等式問題
(a). When ab+bc+ca=/=0
(b). When ab+bc+ca=0